Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

The $\operatorname{bis}\left(\eta^{5}\right.$-cyclopentadienyl)methylzirconium(IV) methyltris(pentafluorophenyl)borate ion pair

Ilia A. Guzei, ${ }^{\text {a* }}$ Robert A. Stockland Jr ${ }^{\text {b }}$ and Richard F. Jordan ${ }^{\text {b }}$

${ }^{\text {a Department of Chemistry, lowa State University of Science and Technology, Ames, }}$ lowa 50011, USA, and ${ }^{\text {b }}$ Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
Correspondence e-mail: iguzei@iastate.edu
Received 15 October 1999
Accepted 24 January 2000
The title complex, $\left[\mathrm{Zr}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{CH}_{3} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$, crystallizes as an ion pair linked through an unsymmetrical methyl bridge. The bridging $\mathrm{Zr}-\mathrm{Me}$ distance $[2.556$ (2) \AA] is significantly longer than the terminal $\mathrm{Zr}-\mathrm{Me}$ distance [2.251 (3) \AA] , while the $\mathrm{Zr}-\mathrm{C}-\mathrm{B}$ angle approaches linearity [169.1 (2) ${ }^{\circ}$.

Comment

Cationic zirconocene alkyl species of the general type $\left[\left(\mathrm{C}_{5} R_{5}\right)_{2} \mathrm{Zr} R^{\prime}\right]^{+} \quad\left(\mathrm{C}_{5} R_{5}=\right.$ cyclopentadienyl or substituted cyclopentadienyl, $R^{\prime}=$ hydrocarbyl) are the active species in $\left(\mathrm{C}_{5} R_{5}\right)_{2} \mathrm{Zr} X_{2}$-based olefin polymerization catalysts (i.e. metallocene catalysts) (Guram \& Jordan, 1995). Marks and coworkers have shown that $\left[\left(\mathrm{C}_{5} R_{5}\right)_{2} \mathrm{ZrMe}\right]\left[\mathrm{MeB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$ ion pairs can be generated by the reaction of $\left(\mathrm{C}_{5} R_{5}\right)_{2} \mathrm{ZrMe}_{2}$ with $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (Yang et al., 1994). These ion pairs adopt methylbridged structures, i.e. $\left[\left(\mathrm{C}_{5} R_{5}\right)_{2} \mathrm{ZrMe}(\mu\right.$-Me $\left.) \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$. In the course of our studies of the reactivity of $\left[\left(\mathrm{C}_{5} R_{5}\right)_{2} \mathrm{Zr} R^{\prime}\right]^{+}$ species (Dagorne et al., 1997), we have crystallized $\left[\mathrm{Cp}_{2} \mathrm{ZrMe}\right]\left[\mathrm{MeB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$, (I), which is the simplest member of this series.

(I)

Complex (I) consists of an ion pair joined through a bridging methyl group (Fig. 1). Selected bond distances and angles are presented in Table 1. The structural features of (I) are similar to those of other $\left[\left(\mathrm{C}_{5} R_{5}\right)_{2} \mathrm{ZrMe}\right]\left[\mathrm{MeB}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]$ complexes $\left[\mathrm{C}_{5} R_{5}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Me}_{2}-1,2\right.$, (II), $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}-1,3$, (III), and $\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$, (IV) (Yang et al., 1994)]. The cation in (I) adopts a normal 'bent-sandwich' structure in which the angle between the cyclopentadienyl ligand planes is 131.1 (2) ${ }^{\circ}$. The $\mathrm{Zr}-\mathrm{Me}($ terminal $)$ distance $[2.251$ (3) \AA] is 0.303 (4) \AA shorter
than the $\mathrm{Zr}-\mathrm{Me}$ (bridging) separation [2.556 (2) \AA], while the B - Me distance $[1.667$ (3) \AA] is typical of a B-C σ-bond (Odom, 1982). The structure of (I) is very similar to that of (II), with the largest difference being in the $\mathrm{Zr}-\mathrm{C}-\mathrm{B}$ angle [169.10 (16) and $161.8(2)^{\circ}$, respectively]. The increased bending of the $\mathrm{Zr}-\mathrm{C}-\mathrm{B}$ angle in (II) is likely due to steric interactions between the $\left[\mathrm{MeB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-}$anion and one of the $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Me}_{2}-1,2$ ligands. The $\mathrm{Zr}-\mathrm{Me}$ (bridging) distance in (I) [2.556 (2) \AA] is similar to that in (II) [2.549 (3) A $]$, but shorter than those in (III) and (IV) [2.625 (5) and 2.640 (7) \AA]. Similarly, the $\mathrm{Zr}-\mathrm{C}(\mathrm{Cp})$ distances in (I) are shorter than those in (II)-(IV) [average: 2.489 (2) in (I), 2.500 (2) in (II), 2.516 (3) in (III) and 2.537 (3) \AA in (IV)]. The shorter $\mathrm{Zr}-\mathrm{Me}$ and $\mathrm{Zr}-\mathrm{C}(\mathrm{Cp})$ distances in (I) reflect the lower steric requirements of $\mathrm{C}_{5} \mathrm{H}_{5}{ }^{-}$versus substituted Cp^{-}ligands. There are two close $\mathrm{Zr} \cdots \mathrm{H}$ contacts to the H atoms on the bridging methyl group in (I). These separations [average 2.38 (2) A] are longer than those in (II) [average 2.24 (3) \AA] and exceed the $\mathrm{Zr} \cdots \mathrm{H}_{\beta}$ distance $(2.16 \AA)$ in the β-agostic complex [$\left.\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Zr}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) \mathrm{PMe}_{3}\right]\left[\mathrm{BPh}_{4}\right]$ (Jordan et al., 1990). The influence of the charge on the structure of the metallocene unit of (I) can be assessed by comparison of the structures of (I) and the neutral precursor $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$, (V) (Hunter et al., 1983). Due to the increased electrophilic character of (I), the $\mathrm{Zr}-\mathrm{Me}($ terminal) and $\mathrm{Zr}-\mathrm{C}(\mathrm{Cp})$ distances in (I) [2.251 (3) and average of 2.499 (15) \AA, respectively] are shorter than the corresponding distances in (V) [2.277 (5) and 2.525 (12) Å]. The metric parameters for the $\left[\mathrm{MeB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{-}$ anion in (I) are very similar to those found for the anions in (II)-(IV).

Figure 1
Perspective view of (I) with 30% probability displacement ellipsoids.

Experimental

$\left[\mathrm{Cp}_{2} \mathrm{ZrMe}\right]\left[\mathrm{MeB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$, (I), was prepared by treatment of $\mathrm{Cp}_{2} \mathrm{Zr}$ $\mathrm{Me}_{2}(10 \mathrm{mg}, 0.03 \mathrm{mmol})$ with $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(13 \mathrm{mg}, 0.027 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Cl}$ at 298 K . Complex (I) crystallized as colorless blocks upon slow evaporation of the solvent at 233 K .

Crystal data

$\left[\mathrm{Zr}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]\left(\mathrm{C}_{19} \mathrm{H}_{3} \mathrm{BF}_{15}\right)$
$M_{r}=763.46$
Monoclinic, $P 2_{1} / n$
$a=12.1506$ (7) \AA
$b=15.4040(9) \AA$
$c=15.5477$ (9) \AA
$\beta=109.199$ (1) ${ }^{\circ}$
$V=2748.2(3) \AA^{3}$
$Z=4$
$D_{x}=1.845 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5844 reflections
$\theta=2-26^{\circ}$
$\mu=0.525 \mathrm{~mm}^{-1}$
$T=183$ (2) K
Block, colorless
$0.38 \times 0.36 \times 0.32 \mathrm{~mm}$

Data collection

CCD area-detector diffractometer φ and ω scans
Absorption correction: empirical
(SADABS; Blessing, 1995)
$T_{\text {min }}=0.826, T_{\text {max }}=0.850$
13008 measured reflections
5534 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.068$
$S=1.002$
5534 reflections
488 parameters
All H -atom parameters refined

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.
Cnt1 and Cnt2 are the centroids of the C1-C5 and C6-C10 rings, respectively.

$\mathrm{Zr}-$ Cnt 1	$2.195(2)$	$\mathrm{Zr}-\mathrm{C} 11$	$2.251(3)$
$\mathrm{Zr}-$ Cnt 2	$2.198(2)$	$\mathrm{Zr}-\mathrm{C} 12$	$2.556(2)$
Cnt $1-\mathrm{Zr}-$ Cnt2	$131.1(9)$	Cnt2-Zr-C11	$104.0(8)$
Cnt $1-\mathrm{Zr}-\mathrm{C} 11$	$103.8(8)$	Cnt2-Zr-C12	$110.0(9)$
Cnt $1-\mathrm{Zr}-\mathrm{C} 12$	$110.5(9)$	C11-Zr-C12	$87.70(9)$

The $\mathrm{C}-\mathrm{H}$ distances are in the range 0.86 (3)-1.00 (2) \AA and $U_{\text {iso }}$ values for H atoms range from 0.031 (6) to 0.074 (10) \AA^{2}.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SHELXTL (Sheldrick, 1997a); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1249). Services for accessing these data are described at the back of the journal.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Dagorne, S., Rodewald, S. \& Jordan, R. F. (1997). Organometallics, 16, 55415555.

Guram, A. S. \& Jordan, R. F. (1995). Comprehensive Organometallic Chemistry, 2nd ed., Vol. 4, pp. 589-625. Oxford: Pergamon Press.
Hunter, W. E., Hrncir, D. C., Bynum, R. V., Pentila, R. A. \& Atwood, J. C. (1983). Organometallics, 2, 750-755.

Jordan, R. F., Bradley, P. K., Baenziger, N. C. \& Lapointe, R. E. (1990). J. Am. Chem. Soc. 112, 1289-1291.
Odom, J. D. (1982). Comprehensive Organometallic Chemistry I, Vol. 5, edited by G. Wilkinson, F. G. Stone \& E. W. Abel, p. 258. Oxford: Pergamon Press. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997a). SHELXTL Reference Manual. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997b). SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Yang, X., Stern, C. L. \& Marks, T. J. (1994). J. Am. Chem. Soc. 116, 1001510031.

